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We show that if the energy required for the evaporation of a drop is supplied by molecular  heat 
conduction in a vapor medium, then the calculation of correc t ions  for the Stokes equation r e -  
quires that we take into account the nonspherical  nature of the vapor f low on the surface of the 
drop.  

We study the quasis tat ionary evaporat ion of a drop with internal heat re lease  that is limited by an equa- 
t ion of heat balance.  The tempera tu re  of the surface of the drop is assumed to be equal to the tempera ture  of 
boiling. The t r ans fe r  of energy f rom the drop to the vapor medium is real ized by emission,  molecular  heat 
conduction, and convection. The tempera tu re  difference between the drop and the surface is assumed to be 
smal l  in compar ison  to the t empera tu re  of the drop.  T h e  numbers Re and R, which are  determined according 
to  the velocity of the slow vapor flow and the velocity of the vapor near the surface of the drop, satisfy the 
conditions Re << R << 1. The slow vapor resul ts  in a symmet ry  in the distr ibution of the tempera ture  field in 
the region of the drop and, consequently, in the distr ibution of the velocity of the vapor on its surface .  

The vapor motion around the drop is descr ibed by the Navier --  Stokes equations and equations of con- 
tinuity which, as is known [1], lead to the equation for the s t r eam function 
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Here ~b and r are  dimensionless s t r e a m  functions and the distance to the center  of the drop; Vr and v 6 are  
components of the dimensionless  velocity in the spher ical  coordinate sys tem with the polar axis along the di-  
rec t ion  u of the velocity of the flow at infinity; a is the radius of the drop; v is the kinematic viscosi ty .  We 
must replace r ,  v r ,  v0, r by a t ,  UVr, uv 0, ua 2 ~ to t r ans fo rm to the common dimensional quantities. 

The boundary conditions are  
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Here w(0) is the dimensionless  radial  component of the vapor velocity on the surface of the drop.  

We seek the solution of Eq. (1) with boundary conditions (2) as 
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Here ~0 is the s t r e a m  function of the potential flow that sat isf ies the equation D2:P0 = 0 and the boundary con- 
ditions 

0% = w sin 0 for r = 1, 0~----2-~ --~ 0 as r ~ co. 
ao Or 

If we expand the velocity w in ser ies  in Legendre polynomials and limit ourselves to the f i rs t  two 
t e r m s ,  which assumes  the presence of the smal l  pa ramete r  determined below, then the s t r eam function 
will take the form 

% = - -  w 0 cos 0 + ~----s sin 2 0. 
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The s t r eam function Ss in Eq, (3) that descr ibes  the flow of the solid sphere in a Stokes approxima-  
t ion takes the fo rm 

~o~= ~ 2r ~ -3 r+  sin ~0. 

The superposi t ion of  the s t r eam function r + ~'s does not satisfy the second boundary condition of 
(2). If we seek a s t r eam function with accuracy  up to t e rms  of order  R inclusive, then we obtain the fol-  
lowing equation to find r : 
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Equation (4) follows f rom (1) if we replace r with $0 and D2g with D2(~0 + ~bs) = D2$s in the convective 
t e r m  before the operator  D2r 

The solution of Eq. (4) with boundary conditions (5) takes the fo rm 

9R - -  2 + sin 2 0 + ~ sin 20. (6) l p , = - -  3--2 r r - -  

We note that the solutior/obtained corresponds to the partial computation of the convective terms in 
Eq. (1), which is justified in region r of order I if the expression Re << l~ << i is realized. 

The pressure in the vapor medium is determined from the Navier -- Stokes equation, which is pre- 
sented in dimensionless form for the convective terms given above: 
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Here v0, Vs, and v 1 are  dimensionless  velocity fields determined by the s t r e a m  functions $0, Ss, $1; P is 
the dimensionless  p res su re  which should be replaced by ou2p (p is the density of the vapor) in transfforming 
to the dimensional quantities. 

F r o m  this equation the part  of the p res su re  on the boundary of the drop that is essent ia l  for calcula-  
ting the res i s tance  force takes the following fo rm with the expressions for ~0, t s ,  and r taken into account:  

P = '-- 2R---e- + wo + ~ ~1 cos 0 + . . . . . .  
/ . 

The force acting on the drop is determined according to the known velocity field v -= v0 +Vs+Vl  and 
the p res su re .  It is evident that the di rect ion of the force coincides with the d i rec t ion of the velocity of the 
slow flow u. 

Thus,  the project ion of the force on the direct ion u-ls equal to [2] 

F = 2:ra2ou 2 - -  v~ cos 0--~ p cos 0 + Re Or - -  R---~ - - ~  + Or ] sin 0 sin 0 dO. 
0 
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Thus, the equation for the force with the degree of accuracy  under study takes the form 

F =  6z~pvau 1 7 R _ _ ~ _ w  1 . (7) 
24 

The f irs t  t e r m  of this equation agrees  with the Stokes equation [2], which determines  the res is tance  
of the sphere  in the viscous flow. The second t e r m  in (7) agrees  with the resul ts  obtained in [3, 4]. 

We must calculate the heat flow on the surfaee of the drop to determine the coefficients w 0 and w 1 in 
the equation for the res i s tance  force (7). 

At the suffieiently high thermalconduct iv i ty  and thermal  diffusivity of the fluid inside the drop, we assume 
the t empera tu re  of its surface Ta to be the same throughout, and the influx of energy f rom the drop to its su r -  
face is easi ly determined in this ease by the equation for the ene rgy  balance. 

The boundary condition on the surfaee of the drop takes the fo rm 

l----p 'ka=--~-~-(3 a ~ )a+pLu(w~ +w~c~ (8) 

Here o' is the density of the drop; k is the  intensity of the internal heat re lease  per unit mass ;  n is the 
thermal-conduct iv i ty  coefficient of the vapor medium; L is the heat of the phase t ransfer  per unit mass ;  

is the effective degree of the blackness of the drop surface;  ~ is the S te fan- -Bol tzmann constant.  The 
quantities r e fe r r ing  to the surface of the drop a re  denoted by the index a, and those re fe r r ing  to the region 
distant f rom it are  denoted by the index 0% 

We assume that the emiss ion  does not have a significant effect on the tempera ture  in the region of 
the drop, This assumption is justified, as shown in [5], if we sat isfy the conditions 
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where l is the mean free path of the emission,  and n r is the coefficient of radiant  thermal  conductivity. 

The tempera tu re  dis tr ibut ion in the region of the drop is determined by an equation of convective 
heat conductivity : 
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Here • is the molecular  the rmal  conductivity. The boundary conditions are  

~ =  1 for r =  1, ~---~0 as r--~oo. 

The solution of the equation can be obtained by the method of joint asymptotic expansions [6, 7]. 

The monomial internal expansion takes the form ~,  = l / r ,  which allows us to determine the mono- 
mial external expansion 
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The  b i n o m i a l  in terna l  e x p a n s i o n  ~ ,  = ( l / r )  + Pc51 i s  d e t e r m i n e d  by the equat ion  
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It i s  su f f i c i ent  t o  c h o o s e  $ = ~'0 + ~s in ca lcu la t ing  ~l, s i n c e  the computa t ion  of $1 r e s u l t s  in t e r m s  of 
a h igher  order  of s m a l l n e s s  appear ing  in ~1- 

Thus, the binomial internal expansion takes the form 
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It follows f r o m  boundary condition (8) that  

w~ 3pLuP'ka • (T~ - -  T~)paLu ( l  _ z  q_ z q - =  - : - P  Pe 4eaaT~)• , 
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Here  ep is the heat capaci ty  per  unit mass  of the vapor  medium at constant  p r e s s u r e .  

In the absence  of in ternal  heat r e l e a s e  the evapora t ion  of the drop  occurr ing  at a t e m p e r a t u r e  when 
the radiant  energy t r a n s f e r  is negligibly sma l l  in c o m p a r i s o n  to the molecu la r  t r a n s f e r  can be studied as a 
s p h e r i c o s y m m e t r i e  evapora t ion  if Pe << 1. However ,  in calculat ing the effect  of the evapora t ion  'velocity 
on the r e s i s t a n c e  force ,  we must  consider  the nonspher ica l  nature of the evapora t ion  veloci ty  of the drop.  
In this  case  both co r rec t ions  for the Stokes equation will be s i n g l e - o r d e r  quantit ies in Eq. (7). This is 
a l so  valid for R < Re < 1. In the la t ter  case  the necess i ty  a r i s e s  of taking the Oseen t e r m  in Eq. (7) into 
account .  

In [8] the r e s i s t a n c e  force  and the evapora t ion  veloci ty  conditioned by the molecu la r  t h e r m a l  conduc- 
f ivi ty a r e  numer ica l ly  studied with the flow of the compres s ib l e  gas and the var iab le  physical  p roper t i es  
t aken  into account.  However ,  the final analyt ic  equations for  the r e s i s t a n c e  force  and the Nusselt  number  
a r e  not presented  in [8]. 

Another p rob lem a r i s e s  if the vapor  veloci ty  on the su r face  of the drop  is not re la ted  to the molecular  
t h e r m a l  conductivity in the medium surrounding the drop,  as ,  for example ,  when the ene rgy  needed for 
evapora t ion  acts  as a r e su l t  of the intense in ternal  heat r e l e a s e  or the radiant  flow in the low-capture  m e -  
dium.  In this case ,  we can d i s r e g a r d  w 1 in c o m p a r i s o n  to w 0, and the model of the s p h e r i c o s y m m e t r i c  evap-  
ora t ing  drop will be sui table  for  seeking the r e s i s t a n c e  force  and the evapora t ion  veloci ty for P ~ R ~ 1. 
We must  show that this model is a l so  appl icable  for an in tensely  evapora t ing  drop  [9] (Pe < 1, P -  pe < 1) 
in connection with the exponential  d e c r e a s e  of the heat flow that  is in p ropor t ion  to the inc rease  of the evap-  
ora t ion  ve loc i ty  of the drop. 
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